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SUMMARY

Measurements of aircraft gas turbine engine performance in the altitude

test facility at RAE(P) are subject to a small amount of uncertainty resulting

from a combination of precision (or random) errors and bias (or systematic)

errors. The limits of the precision errors can be readily calculated by stat-

istical analysis of the results measured during the engine tests. Bias limits

are not directly observable in the test results, but can be predicted by a com-

prehensive assessment of all possible sources of error, which are propagated tu

the test results.

Many people find these methods difficult to comprehend and apply and this

Memorandum has been written for their benefit. It is a guide not only for engine

test staff at Pyestock but also for their customers who need to be assured of the

rigorous attention given to identifying and reducing measurement uncertainty.
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1 INTRODUCTION

Engine performance measurements in the altitude test facility at Pyestock

are expected to be of 'good accuracy*. This is a qualitative feeling engendered

by the knowledge that most of the instrumentation is calibrated and the perform-

ance results are scrutinised to catch any bad points as they come off the

computer during the engine tests.

From time to time a complete quantitative assessment of engine test

uncertainty (a better technical word than 'accuracy') is made. This may be a

contractual requirement for a new engine project, or it might be needed for the

calibration of a flight engine for which the calculated uncertainty would be

propagated to the aircraft performance in flight. Another instance might he for

'trouble-shooting' to investigate the cause of an anomalous performance result so

as to identify the most important sources of error w-re corrective action may be

applied for best effect.

This Memorandum sets out in fairly simple terms the main features of the

Uncertainty Methodology used at Pyestock. It is largely based on the methodology

of Abernethy and Thompson, with some simplification and change of emphasis to

suit local practices and resources. The methodology has also been extended in

one respect to cover graphical effects by which a performance curve is shifted

due to bias errors propagated through the horizontal axis.

Some of the material of the present report comes from experience with the

Uniform Engine Test Programme (UETP)
2-4

, in which RAE(P) participated with other

international facilities to test and compare results from a pair of 357 engines.

Some of the phraseology may be unfamiliar, or have special meanings, but it

is important that this be clearly understood. The reader is offered a prelimi-

nary exposure to some of the main terms in the Glossary, immediately ahead of the

Notation. A fuller explanation is given in the main text. Subsequently, it is

hoped, the Glossary will serve as a convenient aide memoire for future use.

2 UNCERTAINTY MODELS

Fig 1 indicates the notional model by which randcm (precision) and bias

(systematic) errors occur. In the mind's eye there is a true value whose

position or value is unknown. A fixed tias error, P , ies somewhere within the

range of ±B, the bias limits which are centred on the unknown true value. The

bias interval is 2B.
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RANDOM UNCERTAINTY
INTERVAL =2Ur I

The true value can be outside
the Random Error limits E

RANDOM
ERROR

I
- AL MEASUREMENT

TRUE LOWER LARGE UPPER

WLUE 95% SAMPLE 951.

LIMIT AVERAGE LIMIT

BIAS ERROR A

"A ypic alVA:UE +B- single reading

LOWER TRUE UPPER
BIAS VALUE BIAS
LIMIT (UNKNOWN) LIMIT

BIAS INTERVAL =2B

Fig 1 Notional model of random and bias errors

Random errors, such as E , are scattered around the bias error, following

a 'Normal' or 'Gaussian' distribution. The experimental standard deviation, s

of this distribution can be calculated from a sample of n points:

n-

Thence the random uncertainty U. (also known as the 95% confidence

limits), is given as:

±U, = ±t 9 

(
s

)

where t95 is Student's "t", given by statistical tables. It is expected that

95% of the data points will fall within the lirits '-U.
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The notation model is only used to establish the concept. Since the true

value is always unknown, it is necessary to work with two practical models,

described below.

ADDITIVE MODEL UADD (B + ts)

"99/. Probability of true value in this interval

pvVALUE MEASUREMENT

ROOT SUM SQUARES MODEL URS S = i B  
+ (ts )2

Fig 2 Practical uncertainty models

Fig 2 illustrates two practical uncertainty models which can be used. t.

of these are centred on the observed mean value, which is always known, u/'/e

the true value. with the 'additive model', viz:

±Uadd ± (B + ts)

the bias limits ± B are simply added to the outer ends of the random uncer-

tainty limits ± ts .

The 'root-sum-squares' model is:

tn iit -tsts
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This model is more difficult to visualise, but it implies a probability

distribution for bias errors as well as for random errors which are combined as

independent components. For further discussion see Ref 5.

Abernethy has shown by Monte Carlo computer simulations, reported in

Appendix D of Ref 1, and confirmed on the Pyestock computer, that ±Uadd usually

produces 99% coverage of experimental points, whereas ±Urss produces 95%

coverage.

Ihere has traditionally been a preference for Urss in the UK and Europe,

but a preference for Uadd in the USA. Either, or both, models can be used

because an important feature cf the prediction synthesis methodology is that B

and (ts) components must be kept and reported separately.

The above discussion on bias and precision errors relates to a general

measurement, x , illustrated conventionally in Fig I as a value on the horizon-

tal axis. Similar considerations apply to graphical values of y such as SFC

plotted against a correlating result, z , such as FN as illustrated in Fig 3.

Here, the precision errors are taken to be the values in the y-direction

scattered about the curve fit. The residual standard deviation, RSD takes the

place of the precision index, s . The curve fit (CF) value of y supersedes the

mean value, x , and the separation of CF from the true value (TV) is the bias

error, D . As in Fig 1, the 'notional distribution' of bias errors is centred

on the true value, with the curve fit expected to lie somewhere between the

limits (TV + B) and (TV - B). But, since the true value is unknown, the

'practical distribution' of bias errors is centred on the curve fit, with the

true value expected to lie somewhere within the limits (CF + B) and (CF - B).

The statistical properties of a mean value and of a curve fit are explained

in section 5.

3 THE DEFINED TEST RESULT AND MEASUREMENT PROCESS

The behaviour of errors in real life is very complicated, and so it is

necessary to set up simplified models before any calculations can be made. I.

the past, many differ .nt models have been used, which has created great ccn-

fusion. An ingenious way out of the difficulty is provided by an important

feature of the Abernethy methodology!
, 

known as the 'Defined Measurement Process'

(DMP). This was adopted by RAE(P) in the early 1980s to enable the previous

3-class system of MIDAP
6 
to be converted into the simpler 2-class syster, of

Abernethy.



7

(CF+ B)

DISTRIBUTION OF PRECISION ERRORS
(OBSERVED SCATTER OF POINTS)
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To apply the DMP, it is first necessary to declare exactly what is the

'Defined Test Result' of the measurements. Then any error which appears as

visible scatter in the defined test result is classified as 'Precision', and any

error which remains constant in the defined result is classified as 'Bias'. The

usual practice at RAE(P) is to declare the defined result to be a single perform-

ance curve, such as SFC vs FN, obtained in a single run in the test cell. Hence

the scatter about the curve is regarded as indicative of precision errors, while

the hidden constant errors which displace the curve away from the true curve are

regarded as bias errors.

The way in which errors, from every possible source, propagate through the

whole of the measurement system, is briefly described in the following secticns.

It is often found that the errors which behave as precision errors at some stage

of the measurement process, end up as fixed errors in the defined result - this

is known as 'error fossilisation' because the previously-live errors have died

out to leave fixed, or dead, bias errors in the result. An example of this is

the random scatter which blurs the position of an instrument calibration curve.

Once such a calibration curve is accepted, the difference between it and the true

curve becomes a fi~ed error, ie bias.

In the UETP exercise
2 -
4 some of the other participating facilities adcpteJ

different DMPs from that used by RAE(P), and so their classifications of

precision and bias were different from those of RAE(P). For example, AE2?5

precision class embraced errors which showed random variation at any time

throughout the whole of the UETP exercise in their facility, including the links

with their National Standards. One advantage of the RAE(P) DMP is that precisi:o.

errors, in the form of observed scatter about the performance curves, are comr-

pietely amenaole to standard statistical treatment ir th fnrm of regresslon

analysis, which can be done on-line while the engine is running. This accounts

for all the precision errors that actually exist without the possibility of any

of them being overlooked. Another advantage is that the theory of the 'curvt

shift effect', explained in section 7, strictly only applies to the RAE(F)

definition of bias.

4 DIRECTION OF APPROACH

The techniques of 'Actual Results Analysis' and 'Prediction Synthesis' are

alternative directions of approach, as indicated in Fig 4.

'Actual Results Analysis' is an application of statistical methods as can

be found in standard text books. Ref 7 is a popular introduction, Ref 8 is r.:r-

rigorous but still ieadablv, whili Ff 9 c.r, ains details of the regression.



ACTUAL RESULTS ANALYSIS PREDICTION SYNTHESIS

ENGINE TEST RESULTS ESTIMATED ELEMENTAL ERRORS
(Observed Scatter 1. Bias Limits
of Actual Data) 2. Precision Indices

Input Input

STATISTICAL ANALYSIS ERROR PROPAGATION

Output Output

Random Error Limit of Curve Fits 1. Bias Limits of Test Results, eg. SFC
(RELCF) eg. SFC curve 2 Precision Indices of Test Results, eg. SFC

ICan not be applied to Bias Errors)

Fig 4 Alternative directions of approach for uncertainty assessment

analysis used to establish the random uncertainty of performance curve f:t7.

Actual Results Analysis takes the evidence of data which actually occurs 17
, 

ne

engine test to establish the Random Error Limit of Curve Fit (RELCF), T:s -5

that band within which the true position of a performance curve wculd lie if

there were no bias errors. A fuller description is given In secticn 5.

The alternative direction of approach is kncwr as 'Predicticn Synt .es-, 
'
,

which deals mainly with bias errors, but precosion errors carn alsz te oncluic..

The methodology of Abernethy and Thc=Tsr.- Is apoie!, witr. scmeslic ..

tions and changes of emphasis, to rrake urnertainty prez!.cticns. 2: ;s a

of synthesis because the complete a.swer is built up (ie synthesised) fror

estimates of the basic elements of u7.certainty. A fuler description is ooven

section 6.

7- ,m~ : ,m
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5 STATISTICAL ANALYSIS OF ACTUAL RLESULTS

5.1 Properties of mean values and curve fita

A fundamental property of statistics (see Refs 7 to 9) is that the position

of a mean value, R , of I' Normally distributed points is established more

tightly than a single point, x its experimental standard deviation is:

s' x) (5)

This is indicated in the following sketch

Distribution of S~ .LSx
meon value , i Sx) nSx

Distributkcn of Six)
singie poiflts,x

Fig 5 Probability distribution of a Mean value

Equation (5) applies strictly to No-rral (ie Gaussian) distributionz.

Fortunately, engine test data are usually close approximatiocns to this - th.e

Normality can be checked by statistical tests'-9 if there is any doubt.

Erngire test performance results are usually presented graphically irn the

fcrm of one result, y (eq ZF0-) plotted against a correlating result, z ic;

FN) , and a curve y is fitted by the method of leas, squares (see Refs -, to 9)

So we need t, -'Qal witt. . curve fit, y instead of a mean value, R as

indicated ir. the clio Fig E. ':-,E th at values along the horizontal axis

(a~css~ s e~ceiryth sril rather thar, X because x. is usez!

for the Input' paramreters, th e errors of :,och. are propagated tc both axes, y



y1

MAIN Distribution of
RESULT -individual Points,y

(eg.SFC)

Fi 6 Prbaiit dstibton ofstriburionfif

curverv.Fi

Th cmpet eprssonfo 'thr ers'isgieninRe 9 TAth

poiino40 setbihdmr ihlyta hto igepit n
the improvereno is reAte. o h atr l~ ahrlk envle
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95% confidence limits of j',in other words the Random Error Limits of Curve Fit

(P.ELCF) are given by:

±RELCF =±t 9 5 5~) (7)

These are shown by the inner dashed lines in Fig 6. They are quite close to the

fitted curve in the centre of the graph, but they fan out at the ends of the

data, becoming wide apart for the extrapolations. This latter effect is a useful

safety feature.

Fig 7 shows a typical SFC curve fit from the UETP tests in Cell 3 at

Pyestock. In this example the best fit was a quadratic curve, but sometimes a

cubic curve fit is justified. At the SPEC Z value of 19.75 kN for FN, the curve

fit value is - 29. 527 g kN- 1 
s-1 with the RELCF values ±0. 25%.

DEGREE 2' CURJE FIT (QUADRATIC)

SFCRD TV Be + 1 Z 82"t7 N- 9 POINTS RSO e.28

RELCF - 01 .25
RELIP - +- 3.55 %Z

33,

3

30.

CURUJE F IT 'Y

i.29527'1E2 ___.9

29 --

28.

27 GFEC Z

26'

FNRD " Z

Fig 7 Typical SFC cu'rve fit with RELCF and RELIP lines



13

For special 'Contract Tests', which must be agreed between all parties,

these procedures can be incorporated in an Engine Test Code
0
. In this case the

above analysis is developed so as to control the on-line testing in order to

guarantee that an agreed random uncertainty is actually achieved. Moreover, this

is done with the minimum testing to achieve that goal, by continuous computer

analysis during the testing, taking just enough points (n) to ensure the required

RELCF.

5.2 Random scatter and outlier detection

The statistical properties of mean values and curve fits described in the

preceding section 5.1 assume that the surrounding scatter comes from Gaussian

distributions. The diagrams of Figs 5 and 6 are very much idealised, as though

these random errors were distributed smoothly. However, the real life behaviour

of random errors is much more 'lumpy' than this. Even if there exists a well-

defined background Gaussian distribution, it will be found that random samples

taken from it are always somewhat irregular, especially with samples of small

size. Appendix A shows the sort of experimental distributions that might arise

with such random samples, from which mean values and curve fits are calculated.

In addition to the ragged nature of the actual values that might genuinely

come from Gaussian distributions, there are sometimes a few 'outliers' super-

imposed that do not properly belong to the bulk of the data. It is important

that these outliers be detected and eliminated from the mean values and curve

fits. Procedures for doing this are fully described in Appendix B.

It is usual for the Grubbs tests to be incorporated in the computer data

acquisition routines to automatically detect and eliminate outliers from the

great number of mean values that are taken for a typical test point at Pyestcck.

It is not the current practice to apply computer routines to detect out-

liers in the scatter about the engine performance curve fits, but a possible

procedure is explained in section B.2.2 of Appendix B, whereby this might be dcne

in the future.

The current practice is, briefly, as follows. If the position of the curve

were known exactly, then the 95% confidence limits of the individual points about

it would be given by:

±CL9g(y) ±t 9 5RSD .()

TY p 179
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A more rigorous expression, which takes into account the random uncertainty

of the curve, is given by the Random Error Limit of Individual Points:

±RELIP = ± [(t95RSD) 2 
+ RELCF2]Y (9)

and these lines are shown on Figs 6 and 7. Since RELCF decreases progressively

as the number of points n increases, it follows that

RELIP -) t95RSD . (10)

Even with a modest number of points (say n = 9 as for the curve fit in

Fig 7) it will be found that the value of RELIP is quite close to t95RSD . With

the actual data shown in Fig 7, the RELCF is 0.25%, the RSD is 0.20% and t95

is 2.45. Hence from equation (9)

±RELIP - ± ((2.45 x 0.20)2 + 0 .2 52] = ± 0.55%

and from equation (10)

±RELIP . ± 2.45 x 0.20 0.49%

which is quite a close approximation.

To complete the Pyestock procedure for outlier detection, we would expect

and accept 1 point in 20 to fall just outside the ±RELIP boundaries, but any

point much further away from the curve would be regarded as an outlier and hence

a candidate for deletion. If deleted, the curve fit would then be recalculated

with one less data point.

If this analysis is done on-line during the engine test, the opportunity

exists for extra points to be taken to compare with the suspect point, to help

the decision whether to reject or not. This procedure follows the principles cf

the Test Code
0 
mentioned at the end of section 5.1 above.

6 PREDICTION SYNTHESIS

6.1 Preliminary sensitivity survey

It is usual to start with a preliminary 'sensitivity survey' to get some

idea of the sensitivity of the various performance results (R,) such as SFC, tz

the various 'basic measurements' (x,) such as air meter static pressure (PSA).

An alternative name for x. is 'input parameter', because it is an input tc th1e
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engine performance calculations. This requires the calculation of the 'influence

coefficients' Oki (sometimes called 'sensitivity factors'). In dimensional

terms:

Oki (12)

axi

where aRk is the change in the result Rk due to a change dxi in an input.

In principle, it should be possible to evaluate eki by differential calculus,

but the relationship between Rk and xi in engine performance calculations is

usually too complicated for this. Instead, Oki values can conveniently be

found by perturbation of the computer calculations, providing that the engine

performance program has been written. The calculation of these Oki values is

itself done by computer program. It is more convenient to express the influence

coefficients in relative form:

N . aR, (13)Rk axi (3

In practice, not only are different influence coefficients required for

each xi , for each Rk , but also for each flight condition. Thus

RESULTS Rk

INPUTS X X • * * •

X, X

Fig 8 Matrix of Influence coefficients

The central column of Fig 9 depicts typical influence coefficients.



FWPUT PARAMCTS NFLUr~COFICjSN7S zo'-aTV.91;T tows To Sr'ckv qtrsU~j,
vtiAS LIMI-5S a;1 L0. BIA LMvT5 S

1hZ

si k,, l 7 , .]s , ... ,. I ./.] W'

4 -2 *2____ 2 -1 4

I PSA _ _

&. PA ___ _ ]t
5 TA

10 CDA

to

' PC

2P2

6C NCV 1

JZSS TOAL 1A.S L'MMS Or as~,~Brt~ f.

$CC

Fig 9 Propagation of bias limits from Input parameters to (SFCRD) at target points
(prediction synthesis for J57 UETP tests In Call 3, RAE, Pyestock)
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In this example, taken from the UETP exercise in Cell 3, the matrix

consisted of 15 values of xi , 4 values of Rk and 10 flight conditions - a

total of 600 different influence coefficients. Perhaps the biggest problem here

is to display this information in such a way that the reader can taken it in!

The central column of Fig 9 depicts 150 of such influence coefficients in bar

chart form, for the single result of Rk - SFCRD .

Having established these influence coefficients, one can see at a glance

which are the most important input parameters where most attention must be given

to keep the errors down. Fig 9 shows that x5 - PSI (the engine inlet static

pressure) is the most important item for Rk - SFCRD . At Flight Condition 9 the

influence coefficient is

N5 - 3.5%/% (14)

that is, 1% error in PSI will create -3.5% error in SFCRD. At the other extreme,

it can be seen from Fig 9 that Barometer error has negligible effect on this

particular result, with the worst influence coefficient at Flight Condition 8 of

8O:k - 0.1%/% (15)

that is, 1% error in Barometer will create only 0.1% error in SFCRD. The reason

for this relative immunity to error in Barometer is the beneficial effect of

error-cancellation in the complicated engine performance calculations for SFCRD.

(The left-hand and right-hand columns of Fig 9 are described in the following

section.)

6.2 Complete prediction synthesis

The strategy is laid out in Fig 10. The basic measurements xj (which

were encountered in section 6.1 as input parameters foL the Sensitivity Survey)

are now the interface between Step I and Step 2.

TX 17



18

STEP 1 STEP 2

INTERFACE

CATEGORIES OF BASIC MEASUREMENTS OUTPUT RESULTS
ELEMENTAL ERROR (INPUT PARAMETERS) (Rk)

SOURCES (Xi)(i)

CALIBRATION 1 IzF

DATA ACQUISITION 2XI

DATA REDUCTION 3 S

REAL EFFECTS R 2

w
z

*etc e.

T INFLUENCE COEFFICIENTS

~~dR k  "
STEP 1 "" ki = dXi

BASIC MEASUREMENTS
ELEMENTAL ERROR TABLES

STEP 2

SIAS LIMIT B i/F7Bij ERROR PROPAGATION TABLES

NS Separate tables for eachBISLMTk 
F.[kB,2

Basic Measurement (X i )  NS Separate calculation for each

Result ( Rk )

Fig 10 Error propagation through basic measurements Interface
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For Step 1, separate 'elemental error' tables are prepared for each xi
Table I is an example, where x7 is the test frame load. Error sources are

assessed under four categories (j) as indicated in Fig 11.

INSTRUMENTATION NON- INSTRUMENTATION

ERROR CATEGORIES

1 2 3 4
CALIBRATION DATA DATA REAL

HIERARCHY ACQUISITION REDUCTION EFFECTS

NAT. STD 1. EXCIT. VOLTAGE 1. CURVE FITS 1. SPATIAL
1 AVERAGING

TFR. STD 2. ELEC. SIMUL'N 2. RESOLUTION 2. FLUCTUATIONS
, 2

LAB. STD 3. SIGNAL COND'N 3 TEST FRAME
o 3 (USUALLY MECHANICS

WKG. STD 4. TRANSDUCER NEGLIGIBLE)

S I MEAS. INST. 5. RECORDING

(ALL OBVIATED
BY END TO END
CALIBRATIONS)

Fig 11 Elemental error sources (for each basic measurement)

Category 1 covers the calibration hierarchy, traceable all the way froln

the measuring instrument (a Bofors shear force load cell in Table 1) to the

National Standard at NPL. At each stage the calibration consists of comparing

one standard with another. Fig 12 shows how the original biases are removed by

these calibrations, but in their place there remains a combination of random,

uncertainty with a total standard deviation for the complete calibration

hierarchy of

scA,- - "s. + s + s' + .

TM F p
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Natior~ia Std NS C

~ (S-3)S, Std. Dev. of (NS -TS)

Transfer Std TS__ 
_ __ __ _ _ __ _ __ _

(TS-LS) SSt d. Dev. of (TS.- LS)

Lab. Std LS CO z ____________

i=3S 3 =Std Dev.

}(LS-WS) (LS5-WSM

Working Stdl WS
COR4.

Mesrn(WS - M ) 
5St d Dev of (WS -M I )

Iestumng ZI COR BIAS REMOVED BY CALIB S

FULLY CALIBRATED
(ALL CORRECTIONS) J _SSZ

- Precision Index of
- - Calibration Hierarchy

Fig 12 Original biases removed by calibration
(replaced by calibration uncertainty)
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However, the residual errors from this calibration hierarchy are propagated

to the engine test as a single fixed error, not as random scatter, le they are

'fossilised' from random errors into bias errors within the limits

B1  - ts1 , B2 = ts 2 , etc . (17)

Hence

BCAL + B; + B, + B'.(8

Fig 13 illustrates how any one stage of the calibration hierarchy may be

analysed. The standard deviation in this case would be

Sone stage = 5 )2 (19)i-I 1

where y. is the ith curve fit.

CORRECTION

A

V4AI N CAL--5
CALIBRATIONS
ON DIFFERENT

31 "  - OCCASIONS

.. = NOM REPDINC

SPEC X

Fig 13 Statistical analysis of different calibration lines

In the case cf test frame icaJ in Tatle 1, the calibration hierarchy is

qgite short, with cnly two stages plus a smtall basic uncertainty of the National
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Standard. These elemental bias limits are entered separately in Table 1, because

they will be root-sum-squared down the complete table.

Category 2 is Data Acquisition. Fig 11 shows this conceptually as a

collection of effects in the instrumentation system. However, at Pyestock the

complete effect is always assessed by 'end-to-end' calibrations of the measuring

instrument against the working standard. In the case of test frame load in

Table 1, data acquisition errors are included in the last stage of Category 1 and

the middle item of Category 4. iThe important thing is that no item should be

overlooked, but no item counted twice.)

Category 3 is Data Peduction. in Table 1, an elemental bias limit of

20 N is assessed due to nonlinearity of load calibration.

Category 4 in Fig 11 was introduced at Pyestock to cover important 'non-

instrumentation' effects. In the case of test frame load, for example, these

real effects are manifestations of test frame mechanics (stray friction, spring

and gravity forces) which are found to be more important than any errors in the

instrumentation. (The Bofors shear force load cell with its fundamental

calibration, traceable to the National Standard, is responsible for very little

error.)

When all the entries for elemental errors are czmpleted for a particula:

basic measurement, such as test frame load in Table 1, these elemental bias

limits are combined by root-sum-squares. In the case of Table 1 this amounts tc

41 N.

Step 1 is complete when the separate elemental error tables for each of

the basic measurements have been completed.

Step 2 (see Fig i) consists of propagating the values of B. from the

basic measurements to the test result, Rx . It is convenient to do these

calculations in sep r~te tables such as Table 2, one for each flight conditicn

Values of B. are entered in ''abie 2 and converted to %. The effect of eacL

basic measurement is then propagated to each result, Rk , by means of the

appropriate influence coefficient, thus

B. - s

For example in Table 2, for the result cf R, = SFCRD we have
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i xP Bi0 -0.i 12 ki

2 PSA 0.06 -0.12 -0.01

2 PA 0.25 -0.12 -0.03

etc

Thence the root-sum-squares combination for all the inputs is

± B 21

for the result RK = SFCRD , at Flight Condition 1. This process is depicted in

bar chart form in Fig 9 for the result R, - SPCRD for each of the 10 flight

conditions.

7 THE CURVE SHIFT EFFECT

Engine performance resilts are always presented as graphical correlaticr.s

against other suitable parameters. Fcr example, SFC would be correlated against

Net Thrust. Again, Net Thrust might be correlated against Pressure Ratio F7'FZ

or, alternatively, against ncn-dimensional shaft speed, NH--l 7h.s an oaeo

result of Net Thrust is of no value ty itself without consideratocof 1-

correlating parameter.

The curve shift effect to be described in the present document is a

phenomenon caused by bias errors (as defined at RAE(P)) propagated through the

horizontal axis, z . Precision errors of z (as defined at RAE(P)) will have

some effect on the scatter of points but, since this is likely to be small, a*

has been decided not to describe it in the present document, in order to cone.-

trate attention on the more important effect of bias errors.

The following three Figures (14, 15, 16), taken from actual UET resul[s

illustrate the proble,, while Fig 17 displays the theory to be explaoneJ 17,

text after it.

Fig 14 is an example of a comparison between the performance results f::7

some UETP tests on a J57 engine measured in several international facilitief,

displayed as conventional gi~phs of Rc :z: -:-t - - FNRD, vs Fsers-:.

Ratio, z - £7/P2. Unfortunately, with this conventional presentation, the ely'.

can hardly see the difference between facilities. However, a revised dasFla"

Fig 15 shows deviations AFNRD frcn a datum line, plotted against the sane t-

in which the differences between facilities can now be plainly seen. Fig
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an alternative revised display, using z - NHRD instead of P7/P2. Comparing

Figs 15 and 16, the pattern of the curves from the various facilities is seen to

be drastically altered by changing the correlating parameter from z - P7/P2 to

z - NHRD, even though the values of y - FNRD are exactly the same. So, it is

the bias errors in P7/P2 (on the one hand) or the bias errors in NHRD (on the

other hand) which make such a big difference to the performance curves of FNRD.

The mechanism of the graphical propagation of errors is presented in

Fig 17, in terms of bias limits. The theory only applies to errors that remain

constant in the performance curve. This is no problem with the DMP adopted by

RAE(P) which regards such errors as bias. However, there would be a problem if

some of these constant errors were regarded as precision, as was done by some

UETP participants.

Errors in the Basic Measurements (xi) can propagate to the curve in three

ways, as depicted in Fig 17. The most obvious route El is travelled by errors

that only affect 'yl, and these limits are calculated by standard Abernethy

methodology. The next route 10 is travelled by errors that only affect 'z'.

While these latter have no effect on the -values of the data points, they do

affect the y-position OF THE CURVE as indicated in Fig 17.

The third route E'....... nQ is followed by errors that affect 'y' and

Iz' simultaneously. Their complete effect should be fully allowed for as

indicated in Fig 17, BEFORE it is combined by root-sum-squares with the bias

limits from route and Q. This process yields the 'Bias Limit of Curve Fit',

thus

BLCF + B -B (22)v y~indep ~y,cnm t.com dz z. nde dz"22

Equation (22) can often be simplified, according to circumstances. Thus,

if the curve slope, dy/dz is small, it reduces simply to

22BLCF B 
+ B  B: 1  (23)y~rd~y,cc yar

where By, a; is the total predicted bias limit of y , propagated from all basic

measurements, using standard Abernethy methodology.
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Again, if most of the error in 1z' are independent of 'y', it becomes

2 y2
BLOF = By lndep + [Bz,indep ' (24)

Or again, if most of the errors in 1z' are common to 'y', we get

BLCF - [By .. - B . d (25)

An example of equation (24) is provided by the curves of FNRD vs P7Q2,

where errors in 'y' and 'z' are practically all independent, and so the bias

limits accumulate almost entirely by root-sum-squares as illustrated in the top

of Fig 18.

The special case of equation (25) as applied to the SFC curves is

illustrated in the bottom half of Fig 18 where the sense of the slope is seen to

have a serious effect on BLCF. Errors in z = FNRD are obviously common to

y - SFCRD - WFRD/FNRD via the variable FNRD, and some errors from other sources

are common. Because of this special relationship, the positive limit of By is

always associated with the negative limit of B, , and vice versa. The conse-

quence is that these bias limits will self-cancel when the slop is negative, but

will build up when the slop is positive.

This self-cancelling effect due to the steep negative slope of the SFC

curves in the UETP exercise at low P2 pressure levels, might explain why the

interfacility spreads of the SFC curves were so surprisingly small at the diffi-

cult high altitude Test Condition 9.

The last diagram at the bottom right of Fig 18, illustrates the build-up of

the common errors in the graphs of WalRD vs NLD due, in this case, to the

positive slope. The common error here is the temperature, TI. The group WAIR2

is related to WAI\%TTI, while NLRD is related to NL/\'i. Hence a positive error in

TI causes a positive Bz.co- and a negative B , c0 which build up in a negative

sense, as indicated in Fig 18. On the other hand, a negative error in Ti causes

a negative B,,,o and a positive B,,,,- which build up in a positive sense.

It was suggested in Ref 11 that this important effect of common error in TI could

be a possible contributor to the so-called 'Cell Effect', of which the main

symptom was an apparent difference on engine airflow between ground level test

beds and altitude cells.
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a) GENERAL CASE WITH INDEPENDENT ERRORS IN yAND z

e.g. JFNRD 7.P702 y (POSITIVE SLOPE)
+ BLCF

BIAS LIMITS ACCUMULATE BY R.S.S. + By, indep__

NOTE:- 
-z

SEE FIG.17 FOR COMPLETE 'indep
FORMULA FOR BILCF FORA
ALL CASES. 4 B:,z.

+indep

-By' indep BC

b) SPECIAL CASES WITH COMMON ERROR IN~ yAND z
NEGATIVE SLOPE ISFCRD V. FNRDl POSITIVE SLOPE IWAIRO V. NLRO
BIAS LIMITS SELF-CANCEL BIAS LIMITS BUILD UP
IMOST ERRORS ARE COMMON) (TI ERROR IS COMMON)

+ BLCF

y y
BZ com B y c r B ,corn eY com

+ BLCF

-BLC F

By$ corn Bypcom

Bz)COM BZ,com

-BLCF

Fig 18 Illustration of extreme cases of curve shifts
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HISTORICAL REVIEW OF THE METHODOLOGY

The methodology described in this Memorandum originated in the USA about

15 years ago
1 ' 

At that time a rather different procedure, developed in the UK
6
,

was used at Pyestock. This latter took account of three classes of error:

(i) short-term random errors,

(ii) errors which are systematic in the short term, but random in the long

term,

(iii) long term systematic errors.

At around the same time, contact was made with Abernethy on SAE E33

committee, where it was reallsed that both methodologies could be reconciled by

the concept of 'the defined measurement process'. This allowed the 3-class MIDAP

system to be simplified to the 2-class Abernethy system, and so the latter was

introduced at Pyestock.

After several years experience here, culminating in the UETP exercise
2-4 

in

which a J57 engine was tested in several facilities on both sides of the

Atlantic, the most valuable features have been consolidated. The procedures of

'prediction synthesis' are recognised as essential for assessing bias error

limits, and the discipline of its formal framework helps to ensure that no source

of error is overlooked, but none counted twice. A particularly useful feature is

the separate 'elemental error table' (eg Table 1) for each basic measurement, or

input parameter. These tables, together with the error propagation chart (eg

Fig 9) are especially useful for identifying and tracking down the most important

error sources. On the other hand, the effects of precision errors are considered

to be best left to 'actual results analysis', without the need for the extensive

effort involved in prediction synthesis.

Some aspects of the 'curve shift effect' had been studied at Pyestock more

than a decade ago, with particular regard to Tl error
i
l. But it was the stimulus

of the UETP analysis which led to the full understanding of this phenomenon.

To sum up: we now have a good, practical uncertainty methodology which is

understood and appreciated for engine testing in all NATO facilities.
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Appendix A

EXPERIMENT WITH RANDOM NUMBERS TO DEMONSTRATE STATISTICAL
PROPERTIES OF MEAN VALUES AND CURVE FITS

A.1 Objective of the experiment

When a curve is fitted to 'n' points of two-dimensional data by the method

of least squares, it has to be recognised that the curve is only an estimate of

where the true curve really is, as obscured by the random scatter of the data.

The fitted curve is the best estimate, but the true curve might be anywhere

within an uncertainty band whose limits can be calculated by analysis of the data

in the form of the Random Error Limits of Curve Fit (±RELCF). Section A.3

demonstrates how well such RELCF calculations might cover a true curve when a

sample of 20 points are analysed.

The statistical properties of a least squares curve are analogous to the

properties of a mean value of a random sample. Since the latter is easier to

explain and understand, this will be discussed first, in section A.2.

In both sections A.2 and A.3 the results are presented in alternative ways.

The first and simplest way is to plot the theoretical limits about the true mean,

or true curve, and note how well these limits enclose the experimental mean, cr

experimental curve. Unfortunately, in practice the true mean and true curve are

usually not known and so it is more instructive to plot the experimental limits

about the experimental mean, or experimental curve, and note how well these

limits enclose the true mean, or true curve.

Thus the theory of the text books is put to the test with an actual sample

of random numbers. In this experiment we know exactly what the true mean value

and true curve really are, but we do not know in advance what values of random

numbers will crop up. When the numbers do appear, it is interesting and

instructive to see how the experimental means and curve fits fall within their

estimated uncertainty bands.

A.2 Statistical properties of mean values

Random number generators will produce a series of numbers (R) from a

rectangular distribution between 0 and 1, thus:
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dP
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0 .5

Fig Al Rectangular distribution of random numbers

All values of R are equally likely between 0 and 1, with a true mean of

0.5. Not- that the area under the curve equals 1 (ie total probability - 1).

To generate samples from a Gaussian distribution, we simply take a sequence

of 12 numbers from the above, add them together and subtract the constant 6.00

from the sum:

G - ( I R' ) - 6.00

It is shown in Ref Al that the resulting number (G) will be a sample from a

Gaussian distribution, with the true mean of 0 and the standard deviation of 
1.

Again, the area under the curve equals 1. (Note that a - 1 only when 12

random numbers are taken from the generator.)

M~OS. OEWSiTldP

Fig A2 Gaussian distribution derived from 12 random numbers
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For the present experiment, a series of 20 such values of G were taken

and plotted out in Fig A3. After the first two values of G were available,

their experimental mean was calculated:

- (GI + G2)2

Then after the next value, G3 , arrived, the mean of 3 was calculated:

- (GI + G2 + G3 )G3  3

and so on up to G20 .

At each stage, the experimental standard deviation was also calculated:

n-I

This is an estimate of the standard deviation, the true value of which we

know to be exactly a = 1 .

In the top left of Fig A3 these experimental values of points, G and

means, G , are enclosed by the theoretical limits drawn about the true mean of

zero. Here, the lines at ±20 are the 95% confidence limits of the points, G

while the ±20 limits of mean values are given by:

7(mean) - C(points)

The ±20 limits remain a constant distance from the true mean, and it found

that one out of 20 points falls outside these limits, as expected. The

±20(mean) limits begin quite wide apart where 'n' is small, but converge steadily

as 'n' increases. All the experimental means are seen to lie inside these

limits, while we might have expected one of them to fail outside, although the

mean of 4 is quite near to the upper limit.

The top right of Fig A3 shows the theoretical probably distribution of the

points, as already seen in the text above. The theoretical distribution of the
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mean of 20 points is also shown. This is much tighter than the distribution of

points, but the area under both curves equals 1 (ie total probability - 1).

Now, in a practical situation, the true mean (g) and theoretical standard

deviation (a) would not be known. Instead, we must deal with the experimental

means (G) and experimental standard deviations (s). Hence the bottom left of

Fig A3 shows the experimental 95% limits drawn about the experimental means.

This time it is necessary to use a value of Student's "t95" instead of the

theoretical factor of 2. An interesting feature is that the ±ts limits, calcu-

lated just after the wide fourth point arrived, are much wider apart than the

theoretical ±2a limits - ie with this sample of only n = 4 , including the wide

point, it seemed that a very scattered distribution was being sampled. However,

by the time that n = 20 point had been taken, the ±ts limits had tightened such

that I out of 20 points fell outside.

The experimental standard deviation of the mean is given by

s(mean) s(points)

and the ±ts(mean) limits, drawn about the experimental means, are seen to

enclose the true mean easily.

A histogram of the experimental points is shown at the bottom right oL

Fig A3. This bears a rough resemblance to the theoreticAl distribution of

points. Noting that 'relative frequency' is the same thing as 'probability', we

expect the area of the histogram to be exactly 1 (as it is) just as for the area

under the curves.

It is important to emphasise the distinction between the use of theoretical

and experimental limits of the mean values. The former is a notional situation,

useful for demonstration purposes where we can draw the ±20(mean) limits in

advance and then watch the experimental means come along and fall within this

band, as in the present experiment. The latter is the usual practical situation

where the true mean is not known. This time we can only calculate s(mean) in

retrospect, and expect the true mean to lie within the ±ts(mean) band drawn

about the experimental means.

A.3 Statistical properties of a curve fit

In principle, it would be possible to show how successive curve fits

evolved as the same size (n) built up from n - 4 (which is the smallest size

for a quadratic fit, with statistical calculations) to n - 20 . This would
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follow the procedure followed for the mean value results in section A.2 and

Fig A3, but would be too complicated for this Appendix. Instead, let us suppose

that 20 points of (z,y) data had been obtained, with a sample of Gaussian error

the same as Fig A3 superimposed upon the true y values. The results of a quad-

ratic curve fitted by least square to these data are shown in Fig A4. In the top

left of the Figure, the theoretical ±20 limits (of individual points) and the

±20 limits (of the curve fit) are drawn about the true curve. As for the mean

value example in Fig A3, it is seen that 1 out of 20 points falls outside these

20 limits, as expected, while the curve fit values all lie within their ±20

limits - which is a little better than expected. Note that the ±20 limits of

c..rve fit become wider apart as we move towards the ends of the curve.

As before, in a practical situation the true curve and true standard

deviation would not be known. And so it is necessary to draw the experimental

limits about the experimental curve fit. The theoretical standard deviation,

a , is replaced by the experimental RSD and, instead of ±20 (of curve fit), we

plot ±ts (of curve fit), ie the Random Error Limits of Curve Fit, ±RELCF . To

plot the 95% confidence limits of individual points, the limits ±t.RSD should

strictly be comoined with RELCF by root-sum-squares, to give the Random Error

Limits of Individual Points:

±RELIP ± [(t.RSD) 2 + RELCF2J "

As the number of points, n , incieases, the value of RELCF decreases,

while t.RSD stabilises. In fact, with the value of n as high as 20, it is a

good approximation to say

±RELIP = ±t.RSD

and these limits are plotted about the curve fit in the bottom half of Fig A4.

It is seen that 1 out of 20 points falls outside the ±t.RSD limits, while the

curve fit values all lie within ±RELCF .

In the top right of Fig A4 ate to be seen the smooth theoretical Gaussian

probability distributions, centered on the true curve. The distribution of

points is exactly the same as was shown in the top right of Fig A3 but, instead

of the distribution of mean values, we now have the distribution of curve fits,

evaluated at two places - ie near the middle of the curve where it is tightest,

and at the ends of the curve where it is widest.
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The histogram of the experimental distribution of points is shown at the

bottom right of Fig A4, centred on the curve fit. This is the same as the

histogram in Fig A3, centred on the experimental mean of 20 points, with the area

of the histogram equal to 1 exactly (ie total probability - 1).

A.4 Concluding remarks

This experiment has analysed a sample of 20 random numbers from a Gaussian

distribution. At the beginning, the writer did not know what the numbers would

be and, if the experiment were to be repeated, a different of numbers would

appear. In fact, the values in Figs A3 and A4 should never occur again.

However, these numbers do demonstrate the sort of way that mean values and curve

fits are expected to occur within the limits that can be calculated from the data

by statistical principles.

Finally, it should be remembered that this Appendix only deals with the

properties of random errors from a Gaussian distribution - sometimes called

'precision errors'. If any systematic (or bias) errors exist, then their effect

would be superimposed on top of the precision errors.
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NOTATION USED IN APPENDIX A

Symbol Description

A1  coefficients of least squares curve fitAl 
1A2

G Gaussian random number

n number of values in a sample

P probability, ie relative frequency of an occurrence

R rectangular random number

RELCF random error limit of curve fit

RELIP random error limit of individual points

RSD residual standard deviation

s experimental standard deviation

t Student's statistic (at 95% probability in this Appendix)

y ordinate value of a two-dimensional point (vertical axis)

curve fit value of y

Z abscissa value of a two-dimensional point (horizontal axis)

U theoretical standard deviation (true value)

M theoretical mean value (true value)

REFERENCE IN APPENDIX A

No. Author Title, etc

Al R.W. Haxming Numerical methods for scientists and engineers.

McGraw Hill, 2nd edition (1973)

________
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Appendix B

OUTLIER DETECTIONJ

B.1 Outliers from a mean value

Two methods can be recommiended, (a) due to ThornpsonBI and, (b) due to

GrubbsB
2
. The former is more active in that it will catch more real wild points,

but it is more prone to reject good points. The latter will reject few good

points, but will not catch as many bad points. These accept/reject properties

were confirmed by Abernethy using Monte Carlo simulation, giving the results

shown in the following two figures. HenCe Grubbs' method can safely be left to

automatic computer operation, but Thompson's method should only be used to 'flag'

Possible outliers for further investigation.

10100 --

so08

40 10

606

Crrect Rejection

o 40 Incorrect Rejection
2 0 of a Good Point 40

-Correct Rejection

o -- incorrect Rejection
0. 1 1",of a Good Point.

20 20

2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0

Outlier Location Outier Location
Numb~er of Standard Deviations From The Average Number of Standird Deviations From The Average

P0 '"74

Fig 31 a43 error in Thompson Fig Bl2 a,j3 error in Grubbs
outlier test (based on outlier test (based on
one outlier in each of one outlier in each of
100 samples of sizes 5, 100 samples of sizes 5,
10 and 40) 10 and 40)
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B.1.1 Thompson's Tau Test

From a sample of n values of x , calculate the mean value x and the

sample standard deviation

l (xi  _ )2
n (B-)n

Note that the divisor here is n , rather than (n - 1). For any suspected

outlier, xj calculate

IX; - iii
S . (B-2)

The point is an outlier if rj is greater than the critical value in

Table 1.

As an example, take the n = 20 points of data in Fig A3 of Appendix A,

where we might suspect that point number 4 is an outlier. Thus, (using the

symbol 'x' instead of 'G')

x4  = 2.307

= 0.148

s* 0.844

12.307 - 0.1481
4 0.44 2.50.8448

From Table B1, the critical value is 1.934 for n - 20 at the 5% level of

significance, hence this point would be flagged as a possible outlier. It is

interesting to note that, in fact, ALL the points in Fig A3 are genuine values

from a Gaussian distribution and so, in this example, Thompson's Tau Test has

been overactive in rejecting a good point! This illustrates the sound advice

that this test should only be used to flag suspect points for further

investigation.

B.1.2 Grubbs' T Test

From a sample cf x data, calculate the mean value x and the standard

deviation

P 9
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(B-3)

Note that this time the divisor is the usual (n - 1) rather than n . For

any suspected outlier, xj , calculate

Tj .k (B-4)

The point is an outlier if Tj is greater than the critical value in

Table 2.

Taking the same example from the data in Fig A3, with point number 4

suspected as an outlier, we have

X4 - 2.307

x - 0.148

s = 0.866

T 1 2.307 - 0.1481 = 2.493
0.866

From Table B2, the critical value is 2.56 for n = 20 at the 5%

confidence level, hence the point is correctly NOT classified as an outlier.

Thus Grubbs' test could safely have been left to automatic computer operation.

B.2 Outliers from a curve fit

Outlier detection methods are not so well established for curve fits as

for mean values. However, there will usually be a computer VDU graph available

for inspection, such as Fig 7 in the main text, to help the judgement. The

current practice at Pyestock for examining such scatter is explained first, in

section B.2.1. An alternative method for possible future use is discussed in

section B.2.2.

B.2.1 Current practice at Pyestock for checking outliers from curve

fits

The computer program which produces the curve fits such as Fig 7 of the

main text, will draw lines of ±RELCF and ±RELIP on each side of the curve,

where

±RELIP ± f (tg,5r)
2 

+ RELCF
2

1 ,

= _ , TY -T
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ie

±tgSSIp ±[(tgss,) 2 
+ (tgssg)2] 2 (B-6)

where sr - , is the residual standard deviation

p is the highest power of the polynomial

and s is the standard deviation of the curve fit.

Dealing first with a straight line, we would have

s = Sr [ + (, R)2 ] (B7)

Removing the t95 factor from equation (B-6)

' rs:p L s sr B-2

sr [l+ +(x
! -

+ (B-)

(Equation (B-9) agrees with a standard formula in Ref B3.)

With the current outlier detection practice at Pyestock, we would expect 1

in 20 points to fall just outside the ±RELIP boundaries. For example, point

number 4 in the curve fit shown in Fig A4 of Appendix A would be accepted as a

good point. Any point which fell much further away from the curve would be

suspected as an outlier and hence a candidate for deletion. If deleted, the

curve fit would be recalculated with one less data point, or it might be possithe

to take another point to keep the numbers up.

B.2.2 A possible alternative outlier test for curve fits

Although the current practice for outlier detection at Pyestock is as

described in section B.2.1, various alternative methods are becoming available.

A good candidate for possible future use, due to Tietjens et alB
4

, was one of a

collection recommended by Abernethy and Ringhiser
55

. This is now described, with

a comment on a tricky piece of philosophy that it contains. Tietjens considers

the theoretical model for a point (x.,y-) deviating from a straight line
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Y = 01 + 2xi + Ei (B-10)

where 01 and P2 are 'true' coefficients and E is a Gaussian error.

The least squares estimate of the line as shown in Fig B3 is

j- b, + b2 xi (B-1i)

y

typical point (xi, y1

AX

yi

A A

FX leasduldvito st ro urereso lee.tn

The observed residuals (ie deviations from the line) are

e; Y y-y. (B-12-)

y, -(b. +b 2 Xi) (-

and the residual standard deviation is

len-2
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Note that there are several alternative symbols for this item

6, . Sr - RSD .

TietJens states that the estimated standard deviation of e is

i r - 1 _ ( x 1  - ) 2 ] 
Y 2

.. . ( -15)

This bears an uncanny resemblance to equation (B-9) for the current

Pyestock method, except for the minus signs instead of plus signs! A possible

explanation is as follows.

Returning to equation (B-12)

ei - Yi - Yi

and applying the rule: 'the variance of a difference is equal to the SUM of the

variances', we get

var(of ej) - var(of yi) + var(of i) (B-16)

ie

2 = 2 + S2 (B-17)
r i Yi

2 (B18

therefore -2 5. 2 2i

2 2 + - (B-19)
- s r xi2-+ )X

[- -2 ] (B-20)

therefore s - s, 1 n - (x -(B-22

which is the same as Tietjens' equation, equation (B-15).

7" F :: 9

I 1 - i I
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So, it would seem that Tietjens takes si to be the 'pure' standard

deviation of the residual errors, whereas sip in equation (B-9) of the Pyestock

method is the predicted standard deviation of the scattered points as augmented

by the uncertainty of the curve fit.

To proceed with Tietjens, the ratio of the maximum deviation to its

standard deviation is found

R - max ej .(B-22)

This is compared with critical values in Tables B3. It R exceeds the critical

value, that point is declared to be an outlier, deleted, and then the curve fit

is recalculated.

The above theory can be extended to higher orders of polynomial curve

fits. Thus from equation (B-18)

s H -2 2] Y2  (B-23)

- [RSD2 - ( RELCF ) ], (B-24)t95

All the values for equation (24) are available from the Pyestock computer

program for polynomial curves up to the cubic.

The ratio for the maximum deviation

R e max (B-22) bis

is then compared with critical values in Tables B4, taken from Ref B6.

This procedure is illustrated by the example of the quadratic curve fit in

Fig A4 of Appendix A. Of the 20 points scattered about the curve, point number 4

is a suspect outlier. For this point we have

7 P a i 9
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ei  - 2.3

- [ _0. (952 5) 2 ] 0.90

2.3

therefore R - -- - 2.55.
0.9

From Table B4 the critical values are

a 0.10 0.05 0.01

R 2.62 2 77 3.06

and so the suspect point number 4 is declared 'not guilty', even at the 10%

level.

This verdict agrees with that of the current Pyestock method which, by

inspection of points on Fig A4, would accept I point in 20 lying just outside the

± t95 s limits of points (also called ± RELIP)



50 Appendix B

Tables Bl and B2

TESTING FOR OUTLIERS FROM MEAN VALUES

(Extracted from Ref BI) (Extracted from Ref B2)

Table 1 Table 2

Thompson's Tau Rejection values for
Grubbs' Method

Table 2. Rejection Values for Grubbs'
Table 1. Thompson's Tau Method

SampleSize Levelt of Significanet Sample
Sipe Leuel of Significance

N P-to% 5% 2% 1% N P - 5% P -2.5% P- 1%

3 1.398 1.4099 1.41352 1.414039 3 115 115 1.15
4 1.5V 16060 16974 .1 4 1.46 1.48 1.49
5 1.611 1.767 two, 1.9175 5 1.6 1.71 1.75

5 1.67 1.71 1.75

6 1.631 1.814 1.973 2.0509 6 1.82 1.89 1.94
7 1.640 1.548 2.040 2.142 7 1.94 2.02 2.10
8 1.644 1.870 2.087 2.207 8 2.03 2.13 2.22
9 1.647 I.W6 2.121 2.256 9 2.11 2.21 2.32

10 1.648 1.896 2.146 2.294 10 2.18 2.29 2.41
11 2.23 2.36 2.48
12 2.29 2.41 2.55

11 1.648 1.904 2.166 2.324 13 2-33 2.46 2.61
12 1.649 1.910 2.183 2.348 14 2.37 2.51 2.66
13 1.649 1.915 2.196 2.368 15 2.41 2.55 2.71
14 1.649 1.919 2.207 2.385 16 2.4 2.59 2.75
15 1.649 1.923 2.216 2.399 17 2.47 2.62 2.79

18 2.50 2.65 2.82
18 1.649 1.926 2.224 2.411 19 2.53 2.68 2.85
17 1.649 1.928 2.231 2.422 20 2.56 2.71 2.88
18 1.649 1.931 2.237 2.432 21 2.58 2.73 2.91
19 1.649 1.932 2.242 2.440 22 2.60 2.76 2.94
20 1.649 1.934 2.247 2.447 23 2.62 2.78 2.96

24 2.64 2.80 2.99
21 1.649 1.938 2.251 2.464 25 2-66 2.82 3.01
22 1.649 1.937 2.255 2460 30 2.75 2.91
23 1.649 1.938 2.259 2,465 35 2.82 2.98
24 1.849 1.940 2.262 2.470 40 2.87 3.04
25 1.649 L.941 2.284 2.475 45 2.92 3.09

50 2.96 3.13
26 1.648 1.942 2.267 2.479 60 3.03 3.20
27 1.848 1.942 2.269 2.483 70 3.09 3.26
28 1.e48 1.943 2.272 2.487 80 3.14 3.31
29 1848 1.944 2.274 2.490 90 3.18 3.35
30 1.648 1944 2.275 2.493 100 3.21 3.38

31 1.648 1.946 2.277 2.495
32 1.648 1.94.5 2.279 2.498

0 1.64485 1.95996 2.32634 2.57582
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Table B3

TESTING FOR A SINGLE OUTLIER IN SIMPLE LINEAR REGRESSION

(Extracted from Ref D4)

CnicoJ Vaiasaof R.forDdWding tOne i n SampUaLinear Rqvsu on

Sample
size (n) a . .10 a. .05 a - .01

4 1.41 1.41 1.41

5 1.69 1.71 1.73

6 1.88 1.92 1.97

7 2.01 2.07 2.16

8 2.10 2.19 2.31

9 2.18 2.28 2.43

10 2.24 2.35 2.53

11 2.30 2.43 2.64

12 2.35 2.18 2.70

14 2.43 2.57 2.80

16 2.50 2.64 2.92

18 2.56 2.71 2.99

20 2.60 2.76 3.06

24 2.69 2.85 3.17

30 2.79 2.97 3.28

36 2.86 3.03 3.35

48 2.97 3.15 3.51

60 3.04 3.21 3.50

103.22 3.40 3.75

Table B4

OUTLIER TESTING IN POLYNOMIAL REGRESSION

(Extracted from Ref B6)

TALtE 1-Uppe" Bound for Criical Value.for Siuderised Resi ual

(a - .10)

np

5 1.7
6 2.00 1.89
7 2.10 2.02 1.90
8 2.18 2.12 2.03 1.91

9 2.24 2.20 2.13 2.05 1.92
10 2.30 2.26 2.21 2.15 2.06 1.92

12 2.39 2.37 2.33 2.29 2.24 2.17 1.93

1 4 2.47 2.4 2.42 2.39 2.36 2.32 2 139 1.-)4
16 2.53 2.51 2.50 2.47 2.45 2.42 P.3 2.23
1d 2.5

'
1 2.57 2.56 2.54 2.52 2.53 2.4 .. 35

2n 2.63 2.62 2.61 2.59 2.53 2.56 2.b2 2.6 2.II
25 2.72 2.72 2.71 2.70 2.69 2.61 2.66 2.63 2.50
30 2.10 2.79 2.74 2.7S 2.77 2.77 2..76 2.73 2.66 P.13
35 2.26 2.d5 2.d5 2.5 2.8 2 2. t d. . 2. 5 2.77 2. 5 t
40 2.91 2.91 2.90 2.90 2.90 2,$9 P. 2 -.57 2.44 2.7;'
45 2. 95 2.45 2.9b 2.95 2.94 2.9-)4 2.93 2.3'1 2.9(0 %.-12
53 2.99 2.90 2.99 2.99 2.96 2.9,. 2..1d 2.97 .3' 2.1 4

60 3.06 3.06 3.05 3.05 3.05 3.')5 3. 05 3.-4 3.71 3.01
73 3.11 3.11 3.11 3.1J 3.1 3.11 3.1A 3.1!1 3.0- 3.n7
(0 3.16 3.16 3.16 3.15 3.15 3.15 3.1 3.15 3.14 3.12

90 3.20 3.20 3.19 3.19 3.19 3.19) 3.19 3.19 3.1s 3.,0

1002 3.23 3.23 3.23 3.23 3.23 3.23 3.:23 .- .2' :4. L2 3.21

.X P ::79
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Table B4 (concluded)

(a = .05)

I n 3 4 5 6 d in 25 i P
5 2.92
6 2. 07 1.93
7 2.19 2.0 1.91

2 .21 2.232 2.20 1.94
9 2.35 2.2) 2.21 2*l2 1.95

1) 2 . 2 2.37 2.31 2.22 2.11 1.95
12 2.52 2. 9 2.5 2.39 2.33 2.24 1.96
14 2.61 2.56 2.55 2.51 2.47 2.41 2.25 1.96
16 2.6s 2.66 2.63 2.60 2.57 2.53 2.43 2.26
2H 2.73 2.72 2.70 2.63 2.65 2.62 2.55 2.44
2( 2.71 2.77 2.76 2.74* 2.72 2.702 2.6"1 2.57 2.15
25 2. 1.9 2.S:- 2.7 2.d6 2.d4 2.83 2.20 2.76 2.6.
30 2.96 2.96 2.95 2.94 2.93 2.93 2.93 2.di 2.7") 2.17
35 3.03 3.02 3.02 3.01 3.00 3.00 2.93 2.97 2.91 2.611
40 3..)S 3.012 3.07 3.07 3.06 3.06 3.235 3.03 3.:3 2.44
45 3.13 3.12 ".12 3.12 3.11 3.11 3.10 3.3) 3.06 2.96
53 3.17 3.16 3.16 3.16 3.15 3.15 3.14 3.14 3.11 3.14
63 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.23 3.15
701 3.,) 3.20 3.21 3.21 3.2d 3.2$ 3.27 3.27 3.26 3.23
.-J3 3.33 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.31 3.2)
J3 3.37 3.3? 3.31 3.37 3.37 3.37 3.36 3.36 3.34 3.34

13C 3.41 3.41 3.41 3.43 3.401 3.63 3. d1 3.43 3.39 3.3!

n~ ~ ~ ~~ ( --- I.---- I s
2 2 3 1. 2. h ., IA 25 ?2

5 1.93
6 2.17 1.9d
7 2.32 2.17 1.9d
6 2.44 2.32 2.18 1.9d
9 2.54 2.64 2.33 2.14 1.99
10 2.62 2.55 2.45 ..33 2.1 1.99
12 2.76 2.70 2.64 2.56 2.46 2.34 1.99
14 2.86 2.42 2.7d 2.72 2.65 2.57 2.35 1.99
16 2.95 2.92 2.88 2.04 2.79 2.73 2.53 2.35
is 3.02 3.00 2.97 2.911 2.90 2.85 2.75 2.59
20 3.05 3.06 1.'04 3.01 2.98 2.95 2.227 2.76 2..20
25 3.2.1 3.19 3.12 3.16 3.14 3.12 3.07 3.02 2.71
30 3.30 3.29 3.2d 3.26 3.25 3.26 3.21 3.17 3.6 2.21
35 3.37 3.36 3.35 3.34 3.34 3.33 3.33 3.24 3.19 2.81
60 3.43 3.62 3.62 3.41 3.60 3.40 3.36 3.36 3.30 3.Gq
65 3.4 3.67 3.47 3.116 3.46 3.45 3.46 3.63 3.3S 3.23
50 3.52 3.52 3.51 3.51 3.51 3.50 3.1*3 3.4S '3. 45 3.34
60 3.60 3.59 3.59 3.59 3.54 3.54 3.57 3.56 3.54 3.44
70 3.65 3.65 3.65 3.65 3.64 3.66 3.64 3.63 3.61 3.57
60 3.70 3.70 3.70 3.70 3.69 3.69 3.69 3.64 3.67 3.64
90 3.74 3.74 3.76 3.74 3.74 3.74 3.73 3.7.3 3.72 3.702

10 3.79 3.78 3.75 3.77 3.77 3.77 3.77 3.77 3.76 3.74
n - number of observations

q - nu.ber of Independent %ariables (including count for intercept If
fitted)
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NOTATION USED IN APPENDIX B

Roman symbols Description

bi first coefficient in linear regression

b2 second coefficient in linear regression

e vertical deviation of point from regression line

n number of points

p highest power in a polynomial equation

q number of coefficients (including the intercept)
in s -"vnomial equation (Table 4)

R max ratio of a residual to its standard deviation

RELCF random error limit of curve fit

RELIP random error limit of individual point

RSD residual standard deviation

s Grubbs' standard deviation, with (n - 1) divisor

s* Thompson's standard deviation, with n divisor

si 'pure' standard deviation of residuals, used by Tietjens

sip standard deviation of individual point

s, residual standard deviation

a. standard ocviation of curve fit
Y

t95 Student's statistic at 95% confidence

T Grubb's statistic

x either: a oie-dimensional random variable
or: a value of two-dimensional data on the horizontal axis

xi  an individual value of x

xj a suspected outlier of x-data

x mean value of x-data

y a value of two-dimensional data on the vertical axis

Yi an individual value of y

a curve-fit value of y

Greek symbols

aeither: type of error due to incorrect rejection

or: level of significance in critical tables

1type of error due to incorrect acceptance

13: first regression coefficient in theoretical model

13 second regression coefficient in theoretical model

E theoretical Gaussian error in regression model

a. residual standard deviatizn

Thompson's tau statistic
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Notes:

2 Much of the notation in this Appendix is that of the original
references.

2 The symbols 
0

r* SD , Sr are synonymous.
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Technometrics, 17,.4, November 19'5

'I
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Table 1

EXAMPLE OF ELEMENTAL ERROR TABLE

(ONE BASIC MEASUREMENT)

ELEMENTAL ERRORS OF BASIC MEASUREMENT (LOAD)

LAD - Test Frame Load

Sensor - Bofors trunnion thrust load cell
S/N 50745

EROR EROR SOURCS BIAS
CATGORESLIMITS

IN]

1. CALIBRATION National force standards e NPL 2
HIEARCHY NPL

Jr 13
HBM transfer std

Bofors pure curves 19

2. DATA Small instrumentation errors
ACQUISITION included in Cat. I and 4-

3. DATA Non-linearity of load
REDUCTION calibration 20

4. REAL AV(z) bias --- nil.
EFFECTS with "scheme 2" OLZ reset

Variation of reset OLZ,z" 21

Hysterisis with closing
throttle for target point 10

RSS TOTALS 41
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GLOSSARY

Note: This Glossary is intended for quick reference with enough explanation to

act as a convenient reminder of the main features of the methodology.

Accuracy A conversational type of word used to convey a qualitative

impression of the goodness of measurements and results.

However, the word is so popular and has so many different

meanings, that it is now too confusing to use in a technical

sense.

Actual The statistical analysis of the random scatter about the test

Results result, usually by analysis of a performance curve to calculate

Analysis its Residual Standard Deviation (RSD) and Ran-z:jn Error Limit of

Curve Fit (RELCF). This involves only the precision errors

which appear with the test result. Bias errors, being

constant, are not revealed.

Average Synonymous with 'mean value'. The random uncertainty of an

average of 'n' points is l/NYn times the uncertainty of a

single point, ie it is thereby improved.

Basic (Sometimes called an 'Input Parameter'.)

Measurement, One of a number of variables (such as airmeter static pressure,

xi PSA, or fuel flow rate, QF, etc) which appear in the

mathematical expressions through which a test result is

calculated from the measurements. A separate Elemental Error

Table is published for each Basic Measurement - see Table I for

an example.

Bias (or A constant error which lies somewhere within the limits ±B

Systematic) The value of the error itself is unknown but the limits can be

Error, 0 estimated by 'Prediction Synthesis'.

Bias Limits, The maximum plus/minus values within which a bias error is

tB expected to lie.

Curve Fitting Synonymous with 'regression', a process by which a best curve,

of some pre-defined mathematical form, is fitted to the test

data by the method of least squares. The statistical

properties of a curve fit are similar to those of a mean value.
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GLOSSARY (continued)

Curve Shift Because engine performance results are displayed as graphical

Effect correlations against other results, it is necessary to account

for the propagation of errors not only directly to the vertical

ordinate, y , but also indirectly via the horizontal abscissa,

z . Bias errors in z do not affect the y-value of a point

but they do shift the position of the curve (see Fig 17).

Defined This embraces every factor and every measurement that has an

Measurement influence upon the 'Defined Test Result', not only in the test

Process itself, but also stretching all the way back through the

calibration hierarchy to the National Standards.

Defined In ordinary usage, the 'Test Result' would be an engine

Test performance parameter (such as Net Thrust, FN or Specific Fuel

Result Consumption, SFC, etc) the determination of which is the object

of the test. In this document, the 'Defined Test Result' has

an extra special meaning for the purpose of uncertainty

assessment. For this it is necessary to declare exactly what

form the result is to be:

either a single point value, R

or a mean value, R

or a curve fit value, R

Degrees of The number of independent points of data involved in a statis-

Freedom, U tical calculation. For a mean value, % - n - 1 . For a curve

fit % - n - p - 1 , where p is the power of the polynomial

curve.

Elemental These are the most fundamental errors that can affect each

Errors Basic Measurement. They are accounted as various Error Sources

in four Error Categories.

Error For each Basic Measurement, there are four categories into

Categories, j which it is convenient to group the various Error Sources for

accounting purposes, thus

(1) Calibration hierarchy

(2) Data acquisition

(3) Data reduction

(4) Real effects.

IyP:1
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GLOSSARY (continued)

Error It is first necessary to declare exactly what is meant by the

Classification 'Defined Test Result', for example an SFC curve. Then any

error which produces random scatter in that result is

classified as 'Precision', and any error which remains constant

(and hence unseen) in that result is classified as 'Bias'.

Error The Bias Limits of each Elemental Error within each Error

Propagation Category, j , are first assessed and accounted in a separate

table for each Basic Measurement, xi . These are combined

separately by root-sum-squares, thus

Bi -

and recorded at the bottom of the separate tables (eq see

Table 1). These Bi values for each Basic Measurement, xi

are then propagated to the Test Result, Rk , by means of the

appropriate Influence Coefficients, and again combined by root-

sum-squares, thus

to give the total effect on each test result (eg see Table 2).

In principle, similar prediction synthesis could be applied to

the Precision Indices but, in RAE practice at Pyestock, it is

considered better to assess this by Actual Results Analysis

(qv).

Error These are the most fundamental origins to which the Elemental

Sources Errors can be ascribed, within each Error Category.

Fossilisation Random errors which occur before the start of the engine test

run, for example during an instrument calibration, will leave a

small fixed error in the calibration curve. This fixed error

is then propagated to the engine test. Thus such effects of

random errors are 'fossilised' into bias errors in the engine

test result.
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GLOSSARY (continued)

Gaussian (The alternative name is 'Normal Distribution'.)

Distribution The bell-shaped probability distribution of random variables,

which is described in all text books of statistics. The most

likely value is the mean value, while 95% of values are found

within ±20 , where a is the theoretical standard deviation.

In practical terms, 0 is replaced by the Precision Index,

s , or by the Residual Standard Deviation, RSD .

Influence The rate of change of a Test Result, Rk , with respect to a

Coefficient, Basic Measurement, xi

Oak

aRkie Oik - ax

r 0 Xi aRk
or ik Rk axi

in relative, or percentage form.

Precision A random variable, assumed to come from a Gaussian distribu-

(or Random) tion, which lies somewhere within the limits ±ts, or ±tRSD.

Error, £ The presence of such errors is shown by the scatter of points

about a mean value, or about a curve fit. The value of 's' or

'RSD' is found by Actual Results Analysis, and Student's "t" is

extracted from statistical tables.

Precision The experimental standard deviation of the Gaussian distribu-

Index, s tizn from which the Precision Errors arise. In principle, the

value of 's' could be estimated by Prediction Synthesis but it

is RAE(P) practice to calculate it from statistical analysis of

actual data.

Prediction This is important as the only way to assess the effects of bias

Synthesis errors. (Precision errors can also be included but these are

best left to actual results analysis.) Every error source in

the defined measurement process is examined and assessed for

elemental bias limits, with a separate table for each basic

measurement (or input parameter). These bias limits are ther.

propagated to the test result by means of influenc

coefficients, and combined to predict the overall effect.

i. ..
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GLOSSARY (continued)

Probability The likelihood of a value being realised. The word

'probability' is synonymous with 'relative frequency'.

Probability In diagrammatic form, the horizontal axis shows all possible

Distribution values of a variable (x , say) while the vertical axis shows

the 'probability density' of x , denoted as dP/dx (eg

Figs Al and A2 of Appendix A), The probability of a value of

x occurring between A and B is given by

A dP
j Udx,

B

ie the area under the curve between A and B . The total

area under the curve

dP

Jdx

is equal to 1, ie total probability.

RELCF The random error limits of curve fit which describe a band

enclosed by the limits ±RELCF on either side of a curve fit.

If there are no bias errors, the true curve will be expected to

lie somewhere within this band, at 95% confidence. The

statistical properties of RELCF are similar to those of a mean

value, ie the band ±RELCF is narrower than the scatter of

individual points.

RELIP The random error limits of individual points scattered about a

curve fit. These limits are approximated by ±2RSD.

Residual The standard deviation of the residual scatter of points about

Standard a curve fit. It is calculated by statistical methods in Actual

Deviation, RSD Results Analysis.

Student's "t" A factor, extracted from statistical tables against the

appropriate degrees of freedom, to give the confidence limits

±ts, or ±tRSD, within which a precision error is expected tc

lie. The confidence level is usually taken to be 95*.
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GLOSSARY (concluded)

Uncertainty This word is used instead of 'Accuracy' in a technical treat-

ment, such as the present document. Its numerical value is the

half-range of an interval within which the error is expected to

lie. Uncertainty has two components of error, bias and

precision, which may be combined in alternative ways. Thus,

for the UnceLtainty of a single point,

Uadd = B + 2s

or

Urss -
4
B2 + (2s)

2

(Note: The Precision Index, s , could be replaced by the RSD.)
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NOTATION

(see Glossary for detailed explanations)

Roman symbols Description

B bias limit

BLCF bias limit of curve fit

CF curve fit

CL95 95% confidence limit

DMP defined measurement process

FNRD net thrust, referred to desired conditions

G a number from a Gaussian distribution

n number of points

NHRD high pressure shaft speed, referred to desired conditions

P probability (ie relative frequency)

P7Q2 engine pressure ratio - P7/P2

R eitt-r (a) a test result
or (b) a number from a random rectangular distribution

RELCF random error limit of curve fit

RELIP random error limit of individual points

RSD residual standard deviation

s precision index (ie experimental sample standard deviation)

SFCRD specific fuel consumption, referred to desired conditions

TV true value

t Student's "t" factor, usually for 95% confidence

Uad d  additive uncertainty - (B + ts)

Urss root-sum-square uncertainty - 8
1
2 + (ts)

2

UETP uniform engine test programme

Ur random uncertainty - ts

WAIRD engine inlet air flow rate, referred to desired conditions

x a basic measurement

y a main test result, plotted against graph ordinate

z a secondary test result, plotted against graph abscissa

(ie a correlating result)
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NOTATION (concluded)

Greek symbols Description

a bias (systematic) error

£ a precision (random) error

Oki influence coefficient of a result Rk to a basic measurement, xi
aRk

axi

Ytheoretical population standard deviation

Superscripts

- mean value

curve fit value

Suffixes

i general basic measurement

j general source of elemental error

k general test result
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